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analyze the simulated data. The results revealed thet (1) waile

synergisms produce notable effects throughout the range of intercorrelation
values, the most striking influence was found for negative intercorrelacions,
(2) descriptive indices (such as R“) were relatively unrevealing about cthc
presence of synergisms, (3) in contrast, inferential indices (particular.y

the hierarchical test) were much more revealing, and (4) there were corsiceratie
between-stimulus differences in terms of how easily synergisms could be
accurately detected. These findings imply that, because synergisms Lave .eén
frequently overlooked by investigators, they should be specifically testec

for in future research using nonorthogonal designs.
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Detection of Multipllicative Synergisme in
Simulated Data for Nonorthogonal Designs:

What Lies Beyond Linearity?

According to Webster's (1976) dictionary, a synergism is an action
"such that the total effect is greater than the sum of cthe effects taken
independently." 1In psychological terms, synergisms are usually represceniel
by a multiplicative interaction between two or more variables. For inmstanie,

R=f (Ax B), (1
where the response R is a function c¢f the multiplicative combinatica of
variables A and B. A number of behavioral models and theories take the rfor:
of Equation 1. Examples of synergisms in psychology can be found in learning
(performance = drive x habit strength), industrial (performance = ability x
motivation), and social (level of aspiration = desirability of goal x expectancy
of success). For a more complete discussion of the importance of synergism,
along with numerous psychological examples, see the review by Shanteau (1981).

In experimental designs which are orthogonal, such as factorial designs,
detection of a mulitplicative synergism is relatively straightforward. In
analysis of variance terms, a synergism will lead to an interaction. More-
over, the interaction will take a specific bilinear form, i.e., the data
will plot as a diverging fan of lines. While several statistical procedures
are available, the most generally useful technique is to evalute the linear x
linear component of the interaction. The various procedures are discussea
and compared in Shantecau (1978, 1981).

In contrast to the orthogonal case, the detection of synergisms in
nonorthogonal designs is much less clear cut. Nonorthogonal designs typical.y

arise when the levels of variables are assigned in some non-controlled fashion,

e.g., as in a representative design Brunswik, 1956). Typically, this

aie ity
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means that the variables will be intercorrelated with caca otacr. b
} ‘prob]cms caused by such intercorrel:itions are well reconnized in the
literature on multiple-regression analyses (e.g., Darlingron, 1969).
However, the difficulties introduced by intercorrelation in the detection ol
14 synergisms have yet to be analyzed. Therefore, the purpose of the present

study is to evaluate the effects of synergisms on nonorthogonal designs.

Research Strategy

While it would be desirable to use real data sets for analiyzing cyreriisms,
this is impractical on two grounds: (a) It is difficult, if not impossib.ec,
to know in advance whether a synergism does or does not exist in a given
set of data. Without such knowledge, any further analyses would be fruiciess
for present purposes. (b) There is no feasible way to obtain data sets wiich
correspond to all the conditions which would be desirable to examine. More-
over, any real data sets are likely to have been influenced by a variety 1
of other urknown and probably idiosyncratic factors.

Because of these problems, an alternmative research strategy was developed
based on the construction of simulated data sets. There are three note-
worthy features to such data sets: First, the presence (or absence) of a
synergism can be built into simulated data. That is, a synergism can be

specifically included or excluded in the simulated data-generating model.
‘ Thus, the "truth" about the simulated data is known a priori,
Second, various properties of an experimental design can be easily

? and svstematically manipulated with simulated data. For instance, the

{ degree of cue intercorrelation betwecn two variables can be varied from

high positive to high negative with numerous steps in between. Other proper-

ties, such as the size of the design can also be easily specified. There-

fore, an advantage of simulated data is that _otentially important properties

of the design can be varied in predectermined ways.
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Third, nonorthoponal designs with the same properties, car be produced
in many different ways. That is, a variety of stimulus sets can have the
same degree of intercorrelation values, etc. This lack of uniqueness in
nonorthogonal designs makes it desirable to compare alternative stimulus
sets with the same corrclations. Thus, simulated data sets allow a direct
way to evaluate the consistency of any results involving synergisas.

Of course, the use of simulations alsoc has its disadvantages. Scme ol
these will be taken up in more detail in the Discussion., . - this point,
however, it is worth emphasizing that every effort was made to produce cat.
sets which "look like" real data. Towards this end, a variety of mocu.s
were used which resemble those which are known to be used by subjects. In
addition, error was added to the data at levels which are similar to the
values found in typical response sets. In short, the simulated data had
all the outward appearances of realistic data.

The remaining sections of the paper begin with a detailed description
of the simulation technique used. This also includes a consideration of
the procedures, analyses, etc., employed. Then the results from the analyses
of over 14,000 simulated data sets arc presented. Finally, the last section
contains a discussion of the implications, as well as qualifications, of the
present results.

Simulation Approach

The basic goal behind the present rescarch approach was to separate a
typical experimental study into three stages and to simulate each stage
separately. As shown in Table 1, these stages correspond to the construction

of an experimental design (the environment), the formation of the responses

according to some strategy (the subject), and the analysis and interpretacicn

of the results (the experimenter). Since independent algorithms were constructed

for each stage, the simulation techniques will be considered separately.
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Environmental Simulation

The experimental design specifies the stimulus environment .n waich ro-
search evidence is collected. Obviously, a subject can only provide ves:oioes
to the particular stimulus combinations presented. Thi: means that the
experimental design can play a crucial role in determining whether &
specific relation, such as a synergism, can or cannot be detected in Ti.¢ Z.ta.

In the present case, the construction of each stimulus design Involvecd
a two-step process. The first step was based on tentatively constructing &
stimulus set intended to reflect various prespecified conditions. The
second step was based on examining the tentative set to see if, .in facrt,
the desired conditions had been met. For instance, if a prespecified level
of cue intercorrelation was desired, then the observed intercorrelation value
for a tentative set was compared to the desired value. If the stimulus set
met all the conditions, then it was used. If not, and if minor adjustmen:s
did not produce a satisfactory stimulus set, then the set was discarded and
the process started over. Both of these steps will now be considered in more
detail.

Cue generation. A computer algorithm incorporated in the program

CUEGEN (see the Appendix for details) was used to construct sets of nonorihcyg-
onal stimuli with specifiable properties. Some of these properties were
arbitrarily fixed for purposes of this research project, while others were
varied, The following four properties were held constant across all stimulus
sets: (1) Only two-cue stimulus sets were used (see Table 2 for an exampic).

This allowed complete freedom to vary intercorrelations from +1 to -1; the
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use of three or morce cues would have reduced the runge of correlacing vaiuos
possible. (2) The range of the cue values was restricted from O to 100,

This restriction was purely for convenience and involves no loss of generai.cy.
(3) A uniform sampling aistribution was spccified for each cue. Although
other distributions such as normal were considered, it proved to be casivr

to construct appropriate stimulus sets using the uniform. (4) Tre rean an:
standard deviation were specified to be 50.0 and 20.0, respectively. As .=
the case for the other fixed propertics, these arbitrary va '1es appearc.

to have little impact on the pattern of results observed.

Insert Table 2 about here

- — —— ——

There were three properties which were varied systemarically in tre
construction of the stimulus sets: (1) The intercorrelation values were
specified to be +.90, +.75, +.50, +.25, .00, -.25, ~.50, -.75, and -.9G.
These values both covered the range of possible intercorrelations and were
reasonably dense and well-spaced. (2) The number of stimuli in each stimulus
set was specified to be either 25 or 100. These numbers are representative
of what is typically used in "small" and '"large" nonorthogonal designs.

(3) Nine independent stimulus sets were generated for each combination of
correlation value and stimulus set size. There were thus a total of §
(intercorrelations) x 2 (stimulus set sizes) x 9 (independent sets) = 162

stimulus sets generated.

Testing the stimulus sets. Each constructed set was subjected to a

series of tests to check whether it was close to the desired properties,
such as the specified intercorrelation value. Only if a stimulus set

satisfied all the tests was it kept. Otherwise, the cue values were randownly
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adjusted and the seut repeated. If after five adjustmenis, thHC 5l ama.ts .ok
was still not satisfactory, then it was discarded and 4 new 5S¢0 Was JE€RGLoIoo
using the CUECEN program.

There were four types of tests that cach stimulus set had to pass ut

the .05 level in order to be acceptable: (1) The intercorreliatioci between

the cue values (i.e., between paired entries in Table 2) had o e nCasi.o.la-
cantly different from the desired value. (2) The mean for each cuc Se.. . o.oLY
(i.e., each column in Table 2) had to show nonsignificant coviatooro oo

the desired value. (3) Similarly, the standard deviation for each cuoc ...
to be nonsignificantly different from the specified valve. (4]
the distribution of values for each cue separately had to apprcach tuw
uniform distribution. (To make this test, each distriburion was dividec
into segments and deviations from the uniform were computeu for each se ment.
A chi-~square procedure was then used to test for any discrepancies.)

In all, each constructed stimulus set had to pass seven tests: one for

the intercorrelation value and two each for means, standard deviations, and

uniform distribution. In practice, almost all stimulus sets satisfied the
intercorrelation restriction. Tests on means and standard deviations resulted
in a few rejected sets. However, the distribution test was the mos-
demanding and produced by far the highest proportion of rejected sets.
However, it was possible in all cases to construct nine independent stimuius
sets which satisfied each of the tests.

Subject Simuiation

To simulate the subjects' behavior in an experiment, a two-step proces:
was followed. First, a model was specified, e.g., multiplying, for each

simulated subject. This model represents the "truth" to be detected by che
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subsequent analysis.  Second, randon error was Iintroduocd 100 L. o
{ ) realistic responses. Each of these two steps will now ove conoieerca In
detail.

1 Model., Three different models were used in these sima

v
jA)
[
R
Q
o]
w
"
c

A N first was a multiplying model in which the two cues, X. 200 N, wele CORT.i. .o
E as foilows:

Ym = )\l X Xz. -

For the example shown in Table 2, the first pair of valuce ... X i
67.4 and 44.3, respectively. The product, Ym’ wWoulic be 67.4 K L4005 = L o
This model represents a 'pure synergism' in the form of crossyrol.l.

The second model involved addinpg the two cues:

Ya = X1 + XZ. =y
For the first pair of values in Table 2, Ya would be 67.4 + 44.3 = 1l1.7. Tols
model provides a baseline or control condition in which a synergism is xnown

not to exist.

The third model was a combination adding-multiplying model:

Yo =X, + X, (X x X,). (&)

For the example above, YC would be 67.4 + 44.3 + (67.4 x 44.3) = 3097.5.
This combination model allows examination of a synergism in the context o =
adding process.

Error. To produce realistic data, error obviousiy must be introducca.

In considering error, two major choices have to be made which corresponc o

f the location and the size of the error term. In regard to location, c¢.o.o.o.

can be added either before or after the cue values are combined in guatio..-
2 to 4. Introducing error before the combination process corresponds tc
variability produced by stimuius or perceptual uncertainty. Introducing

error after the combination corresponds to v...iability caused by response or

output uncertainty.
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FOr two reasoas, it was decided oo g orror s

L ’ stimulus values. That is, random crror, T, was adica @0 ey Y ovalae ...
Equations 2 to 4 s0 that the sinuiated data, Y', can bo cxplensed as:

Y' =Y + E. (3
The first reason is that statistical models typically assole 4 post-oonianos . oo
addicive error. Siuce one of the gouals 0f this study was L0 Cviivadl Yol.o ..
statistical techniques, it seemed preierable tc maxke the data Ccomeistent Wil
assumptions made by the statistical unalyses.

A second reason is that there is some iimited empirical suppor. ror O
error—-aiter location. Shanteau (1970) examined within-cell varigul...oy

in a task known to produce synergistic behavior, i.e., a garbling tasx.

The cell variances were found to be unrelated to the cell means; this .s

consistent with Equation 5, but inconsistent with a before-combinaticn ¢f

error.
The other major choice involves the size of the error term to bpe aaced. !;
It should be clear, since the ranges of the Y values for the three L
models are quite different, that the same size error ccnnot be used for all
three models. Instead, the size of the error was calibrated individually
to reflect each set of Y values.6 Thus, the Y' values were produced by adding
to each Y a random normal error value, with mean zero and standard deviation
equal to ¢. After trial-and-error exploration, it was found that a c value J
equal to onc-haif of the coefficient-of~variation for the Y values produccd !
the most reasonable looking results, i.e., ¢ = k% x Standard Deviation =+ Ncan.
A variety of other ways of defining ¢ were explored, and in general the paittcon
of the results did not appear to depend on the definition of ¢ used. (Scuc

additional comments on issues related to crror appear in the Discussion).

Using the aporoach outlined above, ten i-dependent data sets werce generatod

for each stimulus set. In other words, from each set of Y values, different
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combinations of random evrror were added to form ten set of YUV o Twel . n
summary, ten simulated subjects were created for each of the Y sots of
stimulus values.

Experimeanter Simulation

For present purposes, the experimenter's role is that of analyzing anu
comparing the results for various statistical methods. Since (here are o
variety of methods which can be used, the experimenter’'s guestion hecomes:
which of the various statistical techniques is most sensit. '¢ o ithe o7
(or absence) of a synergism? Before dealing with this question, howevor, 1t
will first be necessary to review thc overall multiple-regression appraunch

used.

Multiple-regression analysis. tach of the simulated subjects (i.e.,

each set of Y' values) was analyzed by three types of muitiple-regression
models. These models correspond to the three models used tc creste the
data in Equations 2, 3, and 4. Thus, each data set was analyzed using «

multiplicative or pure cross—product regression model:

o= B X x X)), (©

where Yy is a predicted value derived from the product of the cue values
Xl and XZ' Similarly each data set was analyzed using an additive or lineur
regression model:

Ya = Bl X + 82 X

~J

~~

1 2°
where the predicted value Ya is obtained from a weiphted sum of the stim....
values. Finally each data set was analyzed by a multilinear (combined
additive-multiplicative) regression model:

Y, = 81 Xl + 82 X2 + 83 (Xl x X.),

~~
[d8
-

2

where the predicted YC value is a weiyphted sum of the various terms.
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In the actual analyses, ordinary least squares procedurcs ...u Lzcd to

obtain estimatcs of the 3 weights. These estimates minimize the cisirepand

between the original Y' values and the derived ; values. The raw rezress.on

analyses werciperformcd cn the data for each simulated subject. For

convenience, however, the results have becn averaged across the ten subjects
; generated for each stimulus set. (As an aside, the zero intercept andé .io

weight, £

o » have been omitted for clariry from Equations 6 to 8. Thesc values

e
«

were invariably near zero and contributed nothing to the in 2rprertacicn o
results.)

Statistical indices. Based on the muitiple-regression analyses, a auil.r

of statistical measures were computed. These measures are considered In
some detail in the Appendix. However, because the results for many of the
indices were redundant, only the most relevant measures will be coasiderca

in the results. These indices, which are listed across the top of Tables

3 and 4, will be described as necessary in the Results section. «
Results
Since 14,580 separate multiple-regression analyses were run, it is
obviously necessary to be highly selective in presenting results. For
brevity, graphical summaries will be presented of just the most relevant
statistical results. 1In addition, only short descriptions will be given or
the indices (see the Appendix for a more complete description
of the statistical procedures).

Descriptive Indices

The squared multiple-correlation value, RZ, provides a standard measurc
of the variance-accounted-for by a repression model. Figure 1 shows the
) average R2 values for the fit of an additive (linear) regression model

(Equation 7); the left panel gives the results for the 25-stimulus condition

—————— S EI -|||. o |
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and the right puancl yives the result: for the 100=-stiuw.las cordicion. 1.
three lines in cach panel correspond to the three data-pencrating nodeio .o
Equations 2 to 4, with the uine levels of cue intercorrclation listed aion

the horizontal axis. Each of the plotted values in Figure 1 is the averazc

" ) of 90 multiple-regression analyses: ten simulated subjects in each of nine
stimuius séets.

Three general observations follow directly from this and the other

) figures. First, the results appear to be reasonably smooth and lawful,

Moreover, several trends both between curves and across correlation values
are easily discernable. Thus, at least at a surface level, the present
¢ simulation approach has produced orderly data.
Second, the multiplying data model (Equation 2) and the adding-multipliying
model (Equation 4) lead to essentially identical results. With few exceptions,
} the statistical indices produced by these two models are virtually indistin-
guishable. This sugpests that what a synergism is combined with is not as
important as the Jact tnat a synergism is present.
4 Third, the adding data rmodel (Equation 3) led to results which are
consistently lower than the results for the other two data-generating moac.os.
In some circumstances, this might be expected since the adding model serves
as a basecline for many of the analyses. For indices such as Rz, howeve s,
! the iower values were unexpect 1. The reason for this resuit

apparently iies in the procedure used to add error to the simulated data.

s

Using the coeif{icient of variation to detcrmine the size of the error scens

to have tatroduced relatively more error into the adding data than into the
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other two data wmodels. Hence, the ®° are proportionally loweo. o

P
e
ol
t
-

this difference does not influence any of the major findings reported herc
(although it doecs suppest that some attention be given to the issue of

. . ) , 2
compatible error values in any future simulation research).

One unique finding in Figure 1 is that the results in the two pancls
are remarkably similar. For instance, the curves for the synergistic midc ..
are nearly straight for positive intercorrelations with a gradua: increisc .o
around .70. Thus, for positively correlated cues, an add..ive (iiacar,
regression model seemingly produces a stable fit to synergistic data.

For negative intercorrelations, on the other hand, the results reveu.
quite a different picture. In both panels, there is a sharp "elbow" in chc
top curves with the R? values dropping down to around .20. That is, the fit
of a linear regression model to synergistic data is very much influenced
by the degree of negative intercorrelation. (The dip in the curves around .00
intercorrelation in the right panel will be taken up later.)

Figure 2 shows the R2 values for the fit of a multilinear regression
model (Equation 8) to the same data. The two panels, representing the rcsulcs
for 25 and 100 stimulus cases, respectively, are also quite similar. The
top curves are relatively flat for positive intercorrelations with an
asymptote of around .75. For negative intercorrelations, there is again an
elbow in the RZ values. Compared to Figure 1, the top curves are consistently

higher; the fit to the adding data, however, is virtually unchanged.

A more revealing view of the differcnce between Figures 1 and 2 can be

obtained by computing the improvement in R2 ~ained from a multilinear regression
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model over an additive model. These #R% values are shown in ripure 5. As

before, the two panels, for 25 and 100 stimulus cases, are fairly similar.

For positive intercorrclations, the AR2 values stabilize at about .03, i.c.,
the improvement in variance-accounted-for when going from an additive to

¥ a multilinear model is almost constant. For negative intercorrelations,

however, the improvement in fit increases dramatically with higher negative

values. At the most extreme, the ARZ values approach .25 when r =-,50 i tho

right panel.

————————— e o . T e e e e e e o e S

To summarize, the R2 results show that a linear regresssion model

appears to do reasonably well in describing synergistic data when the cues

are positively correlated. But, when the ''correct'" multilinear regression

model is used, there is an improvement of about .05 in the R2 values. However,

o it Eadia

when the cues are negatively correlated, a linear regression model is

definitely inferior to a multilinear regression model. Moreover, the
larger the negative intercorrelation, the greater the improvement by using
the "correct'" regression model.

Beyond variance-accounted-for measures, the most frequently used

descriptive indices are the regression weights. Figure 4 shows the
standardized regression (Beta) weights for the crossproduct terms in Equarticn
8. Except for a falloff with highly negative cue correlations, the Beta
weights are relatively sizable. The values range from around .65 for

highly negative intercorrelations in the left panel to nearly .90 for

highly positive intercorrelations in the right panel.
For comparative purposes, the Beta weigh . for the cross product of a

multilinear model fit to adding data are shown in the middle of the figure.
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As expected, thesc values arce uniforaly near zoevo.  Thus, LHC o Lol e
? weights provide suggestive indications that the presence of a synergioo

does make a consistent difference.

While descriptive indices can be quite useful in summarizing dato, choy
- ' are of course inherently incapable of saying whether a syn. -gism is preseat
or not. That is, they cannot be used to answer yes-no questions. Therciore,
such indices can be quite deceptive if, say, a high R2 value is used to
g support a linear regression model. There is never any way of knowing whether ¢
the observed RZ value is good, bad, or medlocre. For a more complete discussion
of this issue, see Anderson and Shanteau (1977; also see Shanteau, 1977;.
The appropriate way to deal with such issues is to employ inferential
test statistics. Accordingly, the next section will deal with various
inferential indices designed to detect the presence of synergisms.

Inferential Indices

Besides providing descriptive information, the Beta weights for the
crossproduct terms can also be tested for significance. The proportions
of significant Beta weights (out of 90 for each point) are plotted in Figure
5. For 100 stimulus cases, the right panel shows that the weights are
uniformly significant. In contrast, the left panel for 25 cases reveals
; that only highly negative intercorrclations produced proportions near one.
For positive intercorrelations, the proportions drop to near .75. Thus, the
results for regression weights reveal that they are generally sensitive to
= the presence of a synergism. However, this sensitivity is reduced when

25 stimulus cases are used and when the intercorrelations are positive.
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There are some well-known problems with using regression weights to
examine the importance of terms such as crossproducts. One problem is
that when the cues arc intercorrclated, the order in which the terns are
examined can influence the magnitude of a weight (Darlington, 1569).

Also, the scaling of the stimulus metric can influence the apparent impurtance
of even standardized weights (Anderson & Shanteau, 1977). While such prcolems
were controlled for in the present simulations, these shortcomings would
generally make regression weights impractical for testing synergisms in recl
data.

One procedure which avoids these problems is the hierarchical test
proposed by Cohen and Cohen (1975). Briefly, this procedure involves testing
the AR2 presented in Figure 3 with an F-ratio. As can be seen in Figure 6,
the F values are considerably higher for the 100 stimulus cases in the right
panel. Moreover, there is a pronounced decline in the F values as the

intercorrelations go {rom negative to positive.

When these F valuecs are tested for significance, the proportions for the
100 stimulus cases in Figure 7 are uniformly at 1.0. However, the proportions
for 25 cases in the left panel range between .75 and 1.0. In addition,

positive intercorrelations are less likely to produce significant results

than ncgative intercorrelations.

©—— PR TP
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On the whole, the hierarchical procedure is quite sensitive to the
prescnce of a synerpism, especially in the larger stimulus set. In the smaliocr
set, there is a clightly higher chance of derecting synergisms whewn tho
cues are negatively correlated. By and large, however, the hierarchical oo ¢
results were little affected by any of the present environm.ital Menipulalisis.

While the hierarchical test was quite good at detecting synergisms, it
1s not capable of saying whether there is more involved than simple bilinear.ty.
That is, showing that a crossproduct is present does not rule out the preserice
of other more complex terms. One way to check that is to examine the lack-
of-fit after the additive and multiplicative terms have been extracted. As
described by Draper and Smith (1966), F-ratios for lack-of-fit can be used
to test the unaccounted-for-variance. The average F-ratios are shown in
Figure 8 for the 25 and 100 stimulus cases, respectively. The curve
shapes are for the most part similar across the two panels, with the largest

F-ratio found for negative intercorrelations.

The proportions of F-ratio that were significant are shown in Figure 6.
While the proportions are considerably higher for the 100 stimulus cases,
the results are uniformly greater than the chance levels observed for the
adding model. Of course, since deviations from multilinearity are being
tested, and since the synergistic models contain no such deviations, the

proportions should all be at the chance leve.. It would thus appear that
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this procedurce leads to an inflated type T error rate. RPased ©n o srdacnd
’ results, the lack-of-fit test is apparently overly sensitive to nonexistoen.

deviations and therefore should not be used.

= e e e e e e e i S e e

Post-Hoc Analyses

Aside from the planned analyses reported to this poin., severcl accitional
analyses were performed based on some unanticipated results. These involvcd
the surprising influence of some atypical stimulus sets and the anomalious
findings observed with zero-intercorrelation sets.

Between-set differences. 1In the results presented so far, the findings

have been averaged over the nine stimulus sets constructed for each intercor-
relation condition. Since particular efforts were made to ensure the
comparability of these sets, there was little reason to expect any sizable
differences between them. Nevertheless, there were some notable between-—

set differences in the values for various indices.

One of the most striking examples 1is summarized in Table 3; the results
were taken from the .00 intercorrelation/lOO—stimulus—case condition with the
data generated by the adding-multiplying model (Equation 4). The row
entries present the results for each of the nine constructed stimulus sets.
In the first column, the observed cuc intercorrelation values can be seen
to be extremely close to the prespecified .00 value. Although, not shown,
the means, standard deviations, and distributions were also quite closc te
their prespecified values (see Table 2 for an example). The fit of the
linear regression model (Equation 7) led to average Rr2 values in the

second column which range from .61 to .66--with one notable exception.
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The fifth stimulus sct has an R? value of only .37. A similar discrcepancy
can be obscrved in the third column for the R2 values from the fit of &

multilinear model (Equation 8).

' The average Beta weights for the crossproduct term -.re given in col.xn

four with the number significant (out of 10) in parentheses. 7The averc..

K weight falls between .77 and .88, again with the exception of the fifth
set which has a value of .66. Even larger differences can be seen for
the average hierarchical F-ratios in column five and the lack-of-fit
F-ratios in column six. In both cases, the results for the fifth stimulas

- set are far out of line from the other eight stimulus sets.

A more typical set of data is presented in Table 4 for -.90 correlatior/

100-stimulus-case condition. For these results, the eighth stimulus set,

and to a lesser extent the fourth set, stand apart. As an example, the

R? values for the multilinear regression model range from .45 to .60 with

the exception of .30 for the eighth set and .34 for the fourth. Most of

‘ thé other conditions, although not shown to save space, produced results

; similar to Table 4 in that one or two of the stimulus sets stood out from

the others.

' ) In an effort to localize the source of these discrepancies, the means

‘ and standard deviations of the simulated data were computed. As can be seen

from the averages reported in column seven o. Tables 3 and 4, the means are
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quite similar across all the stimulus sets. However, the stanca.. <oviat.®
in column eight are another matter. The values are markedly smulier Ior
the fifth set in Table 3 and the eighth set in Table 4. That is, thc¢ rang.,
variability of the data generated for these sets is compressed relatrive to
the other stimulus sets. This in turn apparently produced smaller vaiues
for various statistical indices. In short, it was more difficuic to ceoece
the presence of a synergism in the data generated from these stimulus =ois.’
Obviously, this would make the generalizability of the resu.=s cobtainea Ivo..

these sets highly suspect.

Zero-correlation results. In several of the figures, the .00 inter-

correlation/100-stimulus-case condition appears to have produced anomalous
results. For instance, in Figures 1 and 2 the top curves in the right paneis
show a marked dip for the .00 intercorrelation value. While the reason

for this anomaly is not entirely clear, .00 intercorrelated stimulus sets
have also been observed to be unusual in other studies (Stewart, 1980).

One contributing factor may be the relative homogeneity of the stimulus
sets with .00 intercorrelation. 1In the first column of Table 3, for instarnce,
the observed intercorrelation values are all extremely close to .00.

Such close similarity was not observed for any of the other intercorrelation
conditions. 1In Table 4, for example, the observed intercorrelation values
range from -.85 to -.93. It would thus appear in the .00 intercorrelation
condition, the stimulus sets were much closer to criterion value than was
the case elsewhere. It would therefore appear that the greater homogencity
of the .00 intercorrelation sets apparently accentuated any differences froum
the other conditions.

Since the stimulus sets in the .00 intercorrelation are so similar, this

emphasizes all the more the uniqueness of th- fifth set in Table 3. That is,
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of all the intercorrelation conditions, this would scerm o Le LLe scant
likely to producce an anamolous stimulus sct. In faect, e fifth sct,
with a4 value of .01, was the only onc not to have an intercorrelation
value of .00. It appecars that even this very slight deviation in the fif¢:
set may have contributed to the anomalous results. This finding sujpests
that atypical stimulus sets can occur even in the most unexpected ana ©.. "o
controlled situations.
Discussion
There are three noteworthy findings in the present study. Firstc,

multiplicative synergisms do make a major difference in nonorthogonal
designs. When trying to account for synergistic data, it matters a great

deal whether a 'correct" or an "incorrect" regression model is used. Wililz

re

the effect is more pronounced for negative intercorrelations, the impac
of a synergism can be seen throughout the range of cue intercorrelations.
Thus, investigators who continue to ignore the possibility of synergisms
may be overlooking some potentially very important relationships.

Second, much of what might be considered common practice in the analiysis
of nonorthogonal data is called into question by the present results. For
instance, some of the indices regularly used to analyze judgmental data,
e.g8., R2, were found to be insensitive to the presence of synergisms. On
the other hand, there were some less common measures which were sensitive to
synergisms, e.g., ARZ, and which could be routinely incorporated into jud mcent
analyses. In addition, a rather surprising result was that some stimulus
cue sets were better than others at revealing the presence of synergisms. »s:iunce
all sets had to meet some rather stringent qualification requirements, this

suggests that there may be some unappreciated difficulties in generalizius

results obtained from nonorthogonal designs.
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Finally, the sacceess of the present simulat.on apgcoooie oo
on several grounds, On the one hand, the approach proved quite usefol 1rm

investipating sou issues which would have been difficuit, tf not ilmpos..o..,
to study empirically. On the other hand, several new research issucs were
raised which can be addrussed in empirical investigations. For instance,

the roie of error in judgmental data might becone of speciel concer: in
future analyses. Although not without limitations, the simultuicous il -

tion of environmental conditions, subject behavior, and rec. o ..:cf _Ivoll.
can provide a fruitful basis for investigating many other issues. Thu
implications of each of these three findings will be taken up in (n¢ refa.itacys

of the Discussion.

The Impact of Synergisms

The present results are quite clear in showing that the presence of a
synergism does make a difference. Regardless of the environmental conditicr.
investigated, there was always an improvement in the fit of a multilinear
regression model over a linear model for synergistic data. While the size
of the improvement did vary depending on which indices and conditions were
used, there was not a single occasional in any of the present simulations

where an improvement failed to appear.

Cue intercorrelations. The pervasiveness of the influence of synergisus

was somewhat unexpected. Perhaps most surprising was the persistent effect

found for the high positive intercorrclation conditions. When cues are ci -

bound together, e.g., by a correlation of +.90, the fit might be expectec to
be insensitive to the form of the regression model. That is, for highly

correlated cues, high values will follow from high cues and low values wi.:

follow from low cues regardless of whether a linear or a multilinecar modei i
used. Moreover, the degrec of insensitivity might be expected to increase uas

the correlation approaches unity.

|
H
|
!
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Instead, the present results revealed an almost constant aifferince
between the fit of linecar and multilinear regression wmodcls for positive
intercorrelations. It would appcar that the degree of intercorreiation.
when it is positive, is of little relevance. Thus, up to the limits o
the present simulation analyses, the influcnce of a synergism appears to
be quite consistent for positive cue correiations.

Some rather curious results appeared {or the ze¢ro~intercorre.ation
condition. Basically, the results are quite similar to thos observed ol
positive correlations. However, several of the figures revealed "dips"
and cther discontinuities for zero intercorrelations. Wnile the source ol

this irregularity is not entirely understood, the important result is never-

theless unchanged: synergisms have just as much effect of this interccrre.a-
tion condition as in any positive condicion,

A rather different picture emerges for negative cue intercorre.aticas.
The greater the size of the negative intercorrelation, the greater the
disparity between the fit of linear and multilinear models to synergistic
data. That is, the size of the negative correlation influenced how much
was lost by ignoring the presence of a synergism.

While some difference between positive and negative intercorrelations
had been anticipated, the magnitude of the difference was not. With nign
negative correlations, the discrepancy between the fit of linear and
multilinear models approaches, and in some cases even exceeds, the fit of
the linear model. That is, the variance-accounted-for can actually be
doubled by shifting from a linear to a multilinear regression model. Dbec....
of the disparity between these results and the general acceptance of linecur
models, the role of such models will next be considered in some depth.

Linear models in decision making. A great deal of knowledge has becvn

accumulated about the use of linear models in summarizing human judgments.




———— e .

Detectlon of Synergisms

24
Much of what has been found sugpest: that neither correct wwed ' 7o aor
correct weights are important for getting an adequatc descrineion OfF ua...

data (Slovic, iischhoff, & Lichtenstein, 1977). The present resuils for
synergistic data would imply the need for some modificationms in this view.
(The issue of weights will be taken up separately below.)

There are a number of papers in the literature which Love ol oo ...

ilinear models can do a good job of describing nonadditive data (...,

Yntema & Torgerson, 1901). In perhaps the best known o .o pdiuTa,
Dawes and Corrigan (1974, p. 98) concludea that "linear mocels are gooo
approximations to all multivariate models that are conditionally Woncic..
in each predictor variable."A The authors go on to add that the linear

approximations improve with increasing error. Hence, there has b.en &

widespread feeling that distinguishing model form is unimportant for most

multiple regression analyses of judgmental data. Indeed, many of the
approaches which use regression procedures, such as the Len's model
approach (Hammond, Stewart, Brehmer, & Steinmann, 1975), routinely ignorc
anything but a linear regression model.

In contrast, Anderson and Shanteau (1977) cautioned against the routine
use of linear models. Among other shortcomings, they offe J an exawplu
of multiplying data which satisfies conditional monotonicity but which I
clearly nonlinear. While a best-fitting linear model correlated .885 witl.
the data, the fit was far from adequate. On a 100-point scale, the lincic
modcl was providing estimates which ranged from =25 to +25 for a dute va.w
of 0. The basic problem was that the data displayed a diverging pattern ..
lines and a linear model can only produce parallel lines. 1In short, o Lii.r

model was not adequate to describe multipliying data.
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? Anderson and Shanteau (19777 wen: on to point out that dnoar .. .olw 1
’ can be useful in applications involving dara prediction. When the gonl is
f to understand psycholonical processes, however, linear noaeis can be

deceptive. For instance, synergistic proccesses can be easily misinterpreto.

T
i e e i b o e

g’ ' as being additive if linear models are used exclusively in data anaiysis
(for an actual example, see Shanteau, 1977).

The present findings extend the arguments against tre routine usc &.

linear models in two ways. Tirst, even the predictive use ¢ & Lincae: modols
can be questioned when, at best, the ioss in variance-accouated-for is 5

At worst, a linear model can account for only half of the systematic viriaa...
Moreover, in all cases, the loss in variance-accounted-for was significant
when a linear model was used. Of course, whether losses of this magnitude
are within the realm of a 'good approximation' might still be subiect to somz
deﬁate. Nevertheless, the present findings suggest that the predictive
ability of linear models should not be uncritically accepted.

Second, previous evidence against linear models, such as that oifered
by Anderson and Shanteau, has been primarily based on analyses of variaace
applied to orthogonal designs. The results offered here demonstrate that
synergisms also make an important diilerence in regression-based analyses
of nonorthogonal designs. Thus, neither the type of statistical analys.s
nor the experimcntal design are relevant to the argument that linear modeis

can be misicading when applied to syneryistic data.

’
Weipghts for iinear models., Several recent papers have pointed out (hav
previous arguments about the inscensitivity for weights for linear models
may be inappropriate. Previously, investigators such as Wainer (1976) as
- ’

well as Dawes and Corripgan (1974), had argued that equal weights (or even

rar lom weights in some circumstances) can do . "out as well as optimal weights
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in linecar wodeis.  ilowever, Newnan (1977) demonstrated thal, whniic oiaca
weights can provide good approximations when cues are positively correlated,

equal weights are generally inferior when cues are negatively correlated.
{ & b O y

Thus, previous arguments about equal weights in linear models apparently !
cannot be generalized to conditions of nepatively-correlated cues (also
see John & Edwards, 1978).
The results here expand anc compiement the findings of Newmai (1977,
While Newman was concerned with showing that weights in a ..ncar Zoucd!
matter for negative intercorrelations, the present results snow that wmoud.

orm m . Thus es are ne ive c elate neither
form also matters Thus, when cues are ncgat ly correlated, h

the weights nor the form of the model shculd be taken for granted.

Positive-vs-negative intercorrelations. Since negatively intercorre.i-

tions produce such different results, it is appropriate to ask about the
conditions under which such intercorrelations might be observed. Perhaps,
negatively correlated cues are relatively rare in reality and so would not
be much cause for concern. After all, perceptual judgments for instance
are made in the context of numerous largely redundant, i.e., positively
correlated, cues (Brunswik, 1956; also see Hammond, 1981).

However, negative correlations may in fact be the rule not the
exception in decision making. Many decision problems are only probiems
because the cues are inversely related. For example, selecting a new car
would be trivial if the attributes were positively correlated, i.e., if tuv
cheapest car was also the best looking. In reality, however, such a car
does not exist and instead we are forced to make tradeoffs between coniliciis,
attributes. Thus, negative intercorrelations will be found precisely in
those situations where decisions are most likely in reality.

A more elegant discussion of the role o. negative intercorrelations can

be found in McClelland (in press). He shows that if the set of alternacives
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is restricted to those that are nondemincted, i.e., on the 2ar ..

) frontier, then the cuces will necessarily be negatively correlated. That :.,
only by including dominated alternatives can a set have anything but
negatively correlated cues. Therefore, excluding inferior alternatives

b ? produces nepative intercorrelations.

Moreover, decision situations inveolving negative intercorrcLialicas oo
also quite likely to lead to synergistic processing rules. For instauc.,
in risky decision making, payoffs and probabilities are ge: :raliy uwe:al..
correlated, i.e., high payoffs have low probabilities and low payoffs Lia e
high probabilities. Further, both the optimal decision rule (Edwacds, ..,
and the strategy generally used by subjects to make risky decisions (Sn: .. .a,
1975) involve the multiplication of probability and payoff. Simiiariy, vi s
synergistic rules are likely to be found in precisely those conditiv.s wic..
negative intercorrelations are observed (Hammond, 1981).

Another way of looking at positive versus negative correlations is in
terms of the assumed resources availabple. "In a world involving positively-
correlated attributes, there is no implied 1limit on resources, i.e., iU 1is

theoretically possible to get the most on all attributes at the same time.

Thus, positive intercorrelations suggest an unlimited-resources view of the

world. 1In contrast, negatively-correlated attributes imply a limit on
; available resources, i.e., it's not possibletosimultanvously get the most ca

every attribute. This latter view may be much more reasonable in a worl.

’
! that, in fact, requires choices involving limited resources.
Statistical Issues and Synergisms
For purposes of detecting synerpisms, two findings at a statistical icvel
’

- stand out. The first concerns the comparison of various statistical inaices.

The second relates to experimental design and the influence of atypical siimulus
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sets., The implications of euch of these {indings will be discoo.cd (0 iaia
section,

Comparison of statistical indiccs. As can be seen in the figures, the

various indices were all sensitive to some extent to the presence of a
synergism. Regardless of the index, the values were uniiormly higher wnen
the "correct" regression model was applied to synergistic cata. This w.io
true across all intercorrelation values and across the twe stinulus sce
sizes.

In practice, however, several of the indices in common use may prev.zc
uncertain information about the presence of a synergism. For instance, a
R% value of .70 for the fit of a linear model may look good--until it is
discovered that a multilinear model leads to a RZ value of .75 for the
same data (these values are taken from Figures 1 and 2). The difficulry
with indices such as R2 (and other correlation-based nmeasures) is that
it is impossible to know by looking at a single value whether the fit is
good or not. Only by comparing the fits for various models can any evaluative
statements be made.

Unfortunately, comparative analyses using alternative models are seldom
performed. Worse yet, there is no limit to the number or variety of alternative
models that might be considered. In short, measures such as R2 do not
provide an adequate basis for detecting synergisms (also see Slanteau, 1977;.

Other common descriptive measures, such as the size of the regression
weight for the crossproduct term, are also inadequate. The problem is
that when cues are intercorrelated, the order in which the analysis is
conducted can influence the size of the weights (Darlington, 1963). This

means that the size of the weights depends on a variable that is under direce:

control of the investigator. Thus, regressior weights provide an uncertain

indicator of the presence of a synergism.
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The only descriptive measure that can be recomumended on v Lullins

12
R

of tlic simulations here is AR, This measure, obtained frowm the differenc.

in fit of linear and multilincur models, was generally sensitive tu tic

presence of a syncrgism. In addition, the hierarchical test discussed
below provides a test of significance that is related to this measure.
Therefore, AR2 would be the preferred descriptive index.

The present resulits, therefore, show that some widely used meusurce In
regression analyses are not suitable for detecting synergi. 's. Tals .
well explain why synergisms have been so infrequently reported in previcus
analyses of nonorthogonuil designs. iIn contrast, numerous instances of
synergisms have been found in studies involving orthogonal designs (e.g.,
Shanteau, 1981).

0f the inferential indices considered here, the measure of choice
appears to be the hierarchical tezt proposed by Cohen and Cohen (1975). The
test correctly detected the presence of synergisms in all the 100 stimulus-
case conditions. A slight decrement in detectability rates was observed for
the 25 stimulus-case conditions. But even at its worst, the hierarchical
procedure detected 75% of the synergisms (see Figure 7). Equally important,
the false-alarm rates for the hierarchical tests were consistently below
10%. 1In short, the hierarchical test was quite sensitive to the presence of
synergisms.

The hierarchical procedure has been advocated (Arnold & Evans, 1976)
precisely because of its potential for evaiuating multiplicative componunis.
A problem in previous regression analyses has been how to analyze multilinear

models when the independent variables are not measured on a ratio scale.

In those cases, an additive component is introduced into the regression modcl

and direct tests of the crossproduct may not bec reveaiing. However, as
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shiown hece, the presence of an additive terw has little influen~e ¢ the
hicrarchical test resulis (see Figures 6 and 7). Thus, the present recom-
mendation would be to include routineiy AR? and the hierarchical procedure
in multiplic-regression analyses of judgmental data (also see Stahl & Harreii,
1 ' 1981).

In contrast, the lack-of-fit test is notable because of its poor
performance. The major problem appears to be an overly large sensitivity to
f’; ' nonexistent deviations from the multilinear model. Of cour: :,it's possitic

that the inflated detection rate may be due to some facet of the present
simulation analyses. That is, would real data produce a better-behaved test
statistic?
To examine this question further, it is worth considering the study by
Shanteau and Nagy (1979). They applied a comparable lack-of-fit procedure
to test the adequacy of a multilinear model for dating decisions. The model
described the data quite well and was highly accurate in predicting actual
4 dating choices. Despite the apparent good fit it, however, the lack-of-fit tests
revealed significant discrepancies for over two-thirds of the subjects.
Additional analyses revealed no discernable locus to the discrepancies, and
the ‘deviations seemed to be quite small. It thus appears that the test is
overly sensitive to small deviations in real data. Taken together with the
simulation results, it would appear that until more is known about the propcrties
of the test, it cannot be recommended for regular use.

[diosyncrasics in nonorthogonal designs. Perhaps the most unexpected

{ finding to come out of the simulations was the occasional occurence of an
atypical stimulus set. What made this so0 surprising was that all stimulus

sets had to pass a number of stringent qualification tests before being accepted.

The goal was to produce stimulus sets that were as homogeneous as possible.
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Yet, onc or two atypical sets were found in ncarly every con.l.lon.  Amon

other differences, such sets led to nonconforming results concernca the
sensitivity of various indices to the presence of a synergism. What thi.
means is that the ability to detect a synergism depends on the particulur
stimulus set selected.

Of course, it is possible that even more stringent qua.iiicazici cews..
would have led to more homogeneous sets. Indeed, based on hinasight, suay
of the present atypical sets could have been eliminated ©.  chccking ¢

variability of the expected (pre-error) response values. Howevar, ders.. .og
stricter selection criteria would not be feasible on two grounds. First,
at a practical level, nonorthogonal designs are frequently used in research
settings which have little or no flexibility. For instance, a markcting
researcher has little if any control over the product alternatiye set.
In such settings, the researcher may have no choice but to use the availabie
stimulus cases.

Second, at a theoretical level, unless the stimulus sets are identical,
they can never be homogeneous for all purposes. While it might be possible
to construct qualification tests to insure that the stimulus sets are
equivalent in regard to detecting synergisms, the sets might still be
dissimilar for other purposes. That is, there is no way to select stimclius
sets that are homogeneous for all applications. Moreover, since many
analyses are impossible to anticipate, there is no way to preselect stirulus
sets. In short, it is not feasible to develop a general-purpose qualiiic.i.on
procedure.

The inability to develop general preselection criteria means that a

researcher can never be certain whether a particular stimulus set is atyp.cal

or not. As the present study demonstrates, even using as many as 100 stimulus
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cases is no protection (sce Tubie 3).  This means that the recaiis i
even fairly larpe deoion. may not goveralize. Unforiwnately, the ponoaihijaty
of atypical stimulus sots raises questions about the generaiizability of

many previous results obtained using nonorthogonal designs.

There are at least three options for alleviating the problem of loacw of
generality. The first option is to replicate all findings using diijc.oene
nonorthogonal designs. This would greatly minimize, but 2ot elimin tc, Ll..
possibility that the observed results will fail to replicatc because of o .

dawe Mo

atypical design. While such experimental replications are oi cours

4

desirable, they may be impractical in many settings.

Second, there are many investigations in which orthogonal (factorial)
designs might be used instead of nonorthogonal designs. Factorial desian: 3
avoid almost all of the problems discussed above for nonorthogonal stimiius
sets. Specifically, factorial designs lead to optimal parameter estimates
and model tests. While factorials do have shortcomings for judgment research,
the disadvantages have frequently been overemphasized relative to the
advantages.5

The final option is to pretest the nonorthogonal design using the types
of simulation analyses performed here. That is, the anticipated behavioral
models, along with the method(s) of analysis, can be simulated in advancc.

In this way, the suitability of the stimulus design for answering the rescarch
question(s) can bec cstablished a priori.

The Role of Simulation Analyses 1

There are both important advantages and important disadvantages to the
use of simulaticn analyses to study issues such as synergisms. On the posicive

side, simulations allow the study of psychological problems that would be

intractable using an empirical approach. On _.c negative side, any simulation
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is only as rood as its assumprions and some of the assumpiion ~de nere ool
certainly be questioned. Before considering these plusces and minuses in
detail, therc are some important distinctions that need omphasis.

Simulations as a psychological research tool are hardly unique. There
are numerous applications in the liccrature of useful simulation analyses.
For instance, computer models of subject behavior hgve been frequently il .wyel
to analyze cognitive processes in problem solving behavior (e.g., Newell
Simon, 1963). Similarly, Monte Carlo simulations have lo:. - been usec 10
analyze the properties of various statistical procedures (e.g., Linuguist,
1953, pp. 75-90).

What separates the present approach from these earlier simulation
analyses is the effort here to simulate all stages of an experiment,
As outlined in Table 1, the three-part approach Involves separate simulations
of enviromment, behavior, and analyses., While prior approaches have concen-
trated on simulations of behavior or analyses, the present approach is to

view the research process as a whole. Therefore, these three elements

are all included in what might be termed an experiment-simulation. The

advantages and disadvantages of this approach will now be considered.
Advantages. There are at least four advantages to experiment simulations.

The first is thatit ispossible to address research questions that could not

be practically investigated in any other way. The present study, for

instance, involves 1,620 separate conditions. To run even one subject ir each

of these conditicns would clearly be prohibitive. Thus, studies that would

be impossible to conduct empirically can still be approximated through expoer.-

ment simulations.

A sccond advantage is that, with the present approach, the ''truth' is

always known. That is, the true state of the environment, the true behavioral
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model, and the true analytic answer are always known.  mnow’ B
“trulhs' allows a number of analyses to be periormued il cuu’td not bue
conducted otherwise. For instance, various designs, mocdels, and anualyiic
tecinnicues can be directly compared because the correct answers are
known. Therefore, the resecarcher is in the highly enviable POSLTLON LI

knowing the truth at every stage.
The third advantage is that experiment simuialions Can be usea 10
generate more precise empirical investigations. That 1o, sinc.at.on.

point out research issues and areas where empirical research is lackir, .

relations conditions were demonstrated in the present simulations. However,
there is as yet relatively little empirical evidence to demonstrate now
subjects respond under the range of conditions studied here. Igs not even
clear whether subeicts would use synergistic rules under all intercorrel.:tion
conditions. Empirical research is clearly necessary to answer such quescions
generated by the experiment simulations.

The final advantage 1is that experiment simulations can be employed
to investigate entirely new research issues. Problems which not have yet
been considered may be highlighted by performing a simulation. 1In the
present study, for example, the location of the error term in the subjcct's
model became a major issue. Yet, because no prior research was availavl.,

this issue could not be addressed empirically. However, synergisms prov:ic

a unique opportunity to separate stimulus error from resonse error ans v
investigate the relative magnitude of each. Thus, experiment simulations
have helped to focus attention on a new and potentially quite interecstin,

research issuc.
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Disadvantayes.  There are twoe noteworthy probioms in the oo vrica
} simulat lon approach used here. The first is that there Is no criterion for
whether the simulatiovus are successiul or not. Wiile the results produced
look reasonable, that is no assurancce that there are not importantdifficulc.ics.
' As a check, what is needed is to compare some of the present findings
against specific empirical results. Until such checks have been perforacd,
there is always the possibility that the present simulations muy be unriioi.o
to empirical reality.
A second disadvantage is that this or any simulation is only
as good as its assumptions. If the assumptions are faulty, then so necessurily
will be the results from the simulation. In the present three-stage approach,
there would seem to be relatively little cause for concern in regard to the
simulations of the environment and the experimenter., The assumptions made
for these stages were largely noncontroversial and in line with standarc
research procedures.
The status of the subject simulation is not as clear, however, since
several rather arbitrary assumptions had to be made. Most notably, the way
in which error was incorporated may be a special source of concevrn. As
noted above, there is little empirical evidence in the literature concerning
how error enters into a subject's behavior. Without such evidence, there
: was no choice except to make some ''seat of the pants" assumptions. Specifically,
it was assumed that error enters in after the stimuli have been combined :.i
? ' that the coefficient of variation provides a useful rule-of-thumb as to
{ the size of the error component.
While these assumptions led to rcasonable-~looking data, they are
certainly subject to further analysis. Additiocnal simulation and empiricai

fl- research can be usced to investigate evror in more detail. Simulations can be
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for to cxplore alternciive assumptions ala.. oei o,

rescarch, as noted above, can be directed at such 1ssuus ds

and Jocation of crror. Thus, the simulation approach taken herve

without its problems, has raised some interesting questions and

some new directions for future research.
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lThe data for each simulated subject were created by randomly perturbing
the Y' values to generate two responsc replications, Yl' and Y2‘. These two
replications represent responses obtained from two independent presentations
of the stimulus set to a subject. The reason for haviag two replications
is that one of analyses required a separate estimate of error; such estimates
can only be obtained by having response replications. For analyses which
do not require independent error estimates, the Yl' and Y2' values were
averaged to produce Y' values.

2Ken Hammond (personal communication, 1980) has indicated that similar
differences have been observed in analyses run for other purposes. Moreovur,
the downward trend for the adding-model results across negative intercor-
relations is also commonly observed. Thus, the present results are appareatly

in line with results found in other scttings.

3To illustrate the effect that a reduced range can have on detecting a

syuergism, consider the following two stimulus sets: In set one, the paired
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cue values are (1,5), (3,5), (5,5), (7,5), and (9,5). In set ¢, ir¢ cue
’ values are (3,5), (4,5), (5,5), (6,5), and (7,5). Looking at just the
first cue, themcansare obviously equivalent in the two sets, but the
standard deviation for set two is less. (Note that setting second cue
! to 5 is for simplicity and convenience; however, it does not effect the
generality of the argument in any way.)

If a multiplying model (Equation 2) is applied to set one, the (error.csc)
data will be 5, 15, 25, 35, and 45. 1If an adding model (& _ition 3, is ujijiicd
to the same set, the data will be 6, 8, 10, 12, and 14. The sum~of-squarec
deviations between the models is 12 + 72 + 152 + 232 + 312 = 1765, witn the
major differeace between adding and multiplying occuring at the upper
end. For set two, the data for the multiplying model is 15, 20, 25, 30, and
35. The data for the adding model is 8, 9, 10, 11, and 12. The sum-of-
squared deviations is then 72 + 112 + 152 + 192 + 232 = 1285, or 480 less
than in set one.

Two points are worth emphasizing. First, the range of the data is
considerably larger in set one than set two. This, of course, follows
directly the construction of the stimulus sets. Second, the difference
between adding and multiply is less in set two than in set one. Assuming
comparable error values, that implies that detecting the synergism in

set two will be more difficult.

4 . . . . . . . .
There is an interesting asymmetrical] relation between intercorrelationa.

’
! values and conditional monotonicity. If the cues are positively correlated,
then if one cue is conditionally monotone so must be the other. If the cues
| ' are negatively correlated, then if one cue is conditionally monotone in one
- direction the other will be conditionally monotone in the opposite direction.
) Thus, knowledge of the intercorrelation vajue ullows inferences to be drawn
» about conditional monotonicity.

. . '
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However, kunowing that cach cuc s conditionally mouaolone Joen ool
any restrictions on the intercorrelition values. In fact, two cues can
both be conditionally monotone in the same direction and still be highly

negatively correlated. Thus, statements about conditional monotonicity

do not allow inferences to be drawn about cue correlations.

5Factorial designs have frequently been criticized on the grounds cthat
(1) they are unrepresentative (Brunswik, 1956), and (2) they frequently
require too many stimulus cases. However, both of these criticisms cun te
met by the use of fractional factorial designs. Such partial designs allow
for both reduction in the number of stimuli and control of unrepre-~
sentative stimuli. Some illustrative applications of fractional designs
can be seen in Phelps and Shanteau (1977) and Slovic (1969).

It is noteworthy that most judgment researchers are aware of the
difficulties of nonorthogonal designs. For instance, the problem of
estimating weights with intercorrelated cues is well known. However, instead
of turning to orthogonal designs, many resesarchers have used nonorthogonal

designs with zero intercorrelations. As the present results make clear,

the .00 correlation condition shares many of the same shortcomings as the j
other conditions. Also, it is not clear how using uncorrelated stimulus

cue sets can be any more representative than using factorial designs. '

6As an aside, some comment should be made about the possibility of
normalizing all the data to cover the same range. Normalization has the !
advantage of allowing the same size error term to be used with the threce
data-gencrating models. Then, a sinqle treatment of error could be applied

to all three data sets.

While this approach seems attractive in theory, there are two practical

problems. First, the pre-error data did not cover any consistent range of
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vatlues.  That is, due to randomness in the construction of the stimu.us sceis
and the restrictions neccessary to satisfy the constraints of intercorreiatao:n
value, cte., the various data sets differed widely in their range. Thus,
even if the same data-gerorating model is used, that is no assurance that
the resulting data will lave similar ranges. Therefore, normalization using
the range (or any other sample statistic) would not lead to equivalent
data sets.

Second, even if the data could somehow be normalized o~ range, anctses
problem remains. The distribution of the data varies systematically betweon
the three models. For the adding model, the data is symmetrically distributec
around the midpoint of the range. Huwever, for the multiplying and adling-
multiplying models, the data is skewed towards the lower end of the range.
This asymmetry is a direct consequence of the multiplying operation in that
a high response can only result form the multiplication of two high cues;
otherwise, relatively low responses will result. Thus, the use of a
constant error term would have dissimilar effects on range-normalized data
for the three models. Proportionally, the error contribution would be less
for the adding model than for the other two models.

Because of such difficulties, it was decided not to normalize the
data values. Instead, the error component was individually calibrated
to match each data set. To reflect both range variation and distributicnal
differences, error was made proportional to the coefficient of variation.
Since this coefficient depends on both the mean and the standard deviation,

it avoids most of the problems outlined above.

= gricer
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Table 2

Illustrative Output From Stimulus Construction Programa
Parameter Requested Observed
Specified Value __Value
Number of Cues 2 2
Number of Stimulus Cases 100 100
Minimum Value, Cue 1 1 6.4
Maximum Value, Cue 1 100 100.0
Minimum Value, Cue 2 1 2.0
Maximum Value, Cue 2 100 97.4
Mean, Cue 1 50 49.9
Standard Deviation, Cue 1 20 19.6
Mean, Cue 2 50 50.1
Standard Deviation, Cue 2 20 19.7
Chi Square Distribution Test, Cue 1 - 12.4
Significance Level (df = 19), Cue 1 » 05 .87
Chi Square, Distribution Test, Cue 2 - 18.4
Significance Level (df = 19), Cue 2 >.05 .50
Intercorrelation Between Cues 1 and 2 0 .00
Stimulus Case Numberb Cue 1 Cue 2
10 67.4 44.3
20 45.5 77.2
30 57.6 24.0
40 23.4 58.7
50 76.2 44,7
60 31.2 12.4
70 51.1 87.0
80 36.5 22.9
90 54.8 19.3
100 95.8 2.0

Foutput adapted from CUEGEN program (see Kaiser & Dickman, 1962; Naylor,
et al, 1965).

bEvery tenth case sclected for illustrative purposes.
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Figure Captions

Figure 1. Averase RZ values for the fit of a linear regression model
(Equation 7) to threc data-generating models: (0) a .ultiplying model
(Equation 2), (1) an adding model (Equation 3), and (2) an adding-multiplyin:
model {Equation 4). (Left panel = 25 stimulus cases, right panei = 100
stimulus cases.)

Figure 2. Average R2 values for the fit of a multilinear regression
model (Equation 8) to three data-generation models: (0) multiplying,

(1) adding, and (2) adding-multiplying. (lLeft panel = 25 cases, right
panel = 100 cases.)

Figure 3. Average improvement in R? values for a multilinear regression
model over a linear regression model for three data-generating models:
(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panels=
25 cases, right panel = 100 cases.)

Figure 4. Average standardized regression weights (8) for crossproduct
term in the fit of a multilinear model to three data-generating models:

(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panel = 25
cases, right panel = 100 cases.)

Figure 5. Proportion of significant regression weights for crossproduct
term in the fit of a multilinear model to three data~generating models:

(0) multiplying, (1) adding, and (2) adding-multiplying. (Left panel = 25
cases, right panel = 100 cases.)

Figure 6. Average F-ratios for hierarchical test applied to three
data-generating models: (0) multiplying, (1) adding, and (2) adding-muitipiving.

(Left panel = 25 cases, right panel = 100 cases.)
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Froportion of sipnificant hierarchical tests fur threc

data-generating models:

(0) mulciplying, (1) adding, and (2) adding-

multiplying. (Left pancl 25 cases, right panel

Figure 8.

100 cases.)

Average F-ratios for lack-of-fit test applied to three

data-generating models:

(0) multiplying, (1) adding, and (2) adding-

Ll S

multiplying. (Left panel = 25 cases, right panel

= 100 cases.)

Proportion of significant lack-of-fit tests for three

data-generating models: (0) multiplying, (i) adding, and (2} «dding-multip.ving.

(Left panel = 25 cases, right panel

100 cases.)
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Appendix

Two of the major components of the present simulation analysis descrve
greater claboration. The first concerns specifica. 0 of the CUEGEN prougran
used to construct stimulus cases. The second involves discussion of Lhe
various statistical procedures used to anaiyze the data. Each of thesec
will be addressed in following supplementary materiai.

CUEGEN Program

This program is based on procedures described in Kaiser and Dickman
(1962) with modifications outlined in Boyle (1970). Relevant prograxning
information can be found in Naylor, Balint{y, Burdick, and Chu (1965).
Additional modifications were incorporatec especially for this research project
by Michael O'Reilly.

Program description. CUEGEN will generate sample stimulus cases which

will approximate user specified values for the means, standard deviations,
and intercorrelations. The sample cases will satisfy with maximulm accuracy
(in a least-squares sense) the specified values within the limits of computa-
tional accuracy, computing time, etc. The user may also specify either a
uniform or a normal distribution and this prgperty will also be maximally
satisfied within limits.

The algorithm used by CUEGEN starts with the desired (population) cor-

relation matrix., Through the use of component analysis, random sample

matrices are generated from the population correlation matrix. If a sample
matrix does not meet the intercorrelation requirements, then adjust-
ments are made in the elements of the matrix to bring it more in line with
the requested matrix. Once a satisfactory sample correlation matrix is

achieved, linear transformations are applicd to produce the desired means and
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standard deviat fene., A properties, Doludin s cae aoeiroonl ior .,
are statistically checked, and o sasple natrix is rolecred 0f anv propero,
is not satisflicd at thie .05 Jevel.

Techinical descrintion. The remaining materiai provides a more technical

discussion of the CULRGEN program. A fundamental postulate of component
analysis states that:
z=FX,
where F (or order n x n) is a factoring of R, the desired .orrelation wmatrix,
and X (of order n x n) is a population matrix derived from the component:
in F. The program begins by generating an arbitrary i, sampling randomliy
from uncorrelated populations with any distribution and with zero mean and
unit variance. Then
-F X ;

A

can be found, where Z represents a matrix of observations from a multivariate

IS

population with zero means, unit variances, and correlations R.

If the absolute correlational error is larger than some acceptable
value, then an element of é is chosen at random and adjusted by a preset step
(default value of 1.0) to reduce thc error. The direction of the adjustment
is chosen by examining the effects of the change on the correlation matrix.
The process is repeated (within specifiable limits) until the desired
intercorrelation values are obtained. Finally, the rows of é may, ifr
necessary, be linearly tranformed to reflect specified means and standard
deviations.

It is possible for a user to rcquest a pattern of propertics which, upen

analysis, leads to a correlation matrix which is non-Gramian. To produce

a correlation matrix most like the specified correclation matrix, negative

eigen values (if any are found during the Gr.oamian factoring) are set to zero.
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The progiram can generate stimulus cases having either a4 Gad.ors or o
' norimal distribution. Consecquently, a test of distribution is performed by

sclting up equai probability intervals. A chi-square test is used to

compare the actual number of cases in each interval with the expected

' number. Sample matrices which fail the distribution test are randomly
altered and reentercd into the program as necessary (default value of
5 reentries). More information on this or any of the other programs is
f;; 4 available upon request from the author.

Statistical Procedures

A number of statistical procedurcs were evaluated in the researcher
simulation stage. Some of these indices were discussed in detail ir the
text (e.g., RZ), while others provided redundant information and so were 55
not discussed (e.g., r). In the following material, the descriptive indices
will first be described followed by the inferential indices. (Except for
the indices which are not widely known, the computational formulas have

been omitted.)

Descriptive indices. (1) Probably the simplest of the descriptive indices

is the ordinary product moment correlation coefficient, r, between the set of

predicted values, Y, and the set of observed values, Y'. (2) A closely

. . . 2 , . .
related measure is the squared multiple correlation value, R”, which describes

s

the variance-accounted-for by a given multiple-regression model. (3) Based

2

: on the R° values for the separate multiple-regression models, a AR? can

| be obtained from the improvement in variance-accounted-for in going from

a lincar model (Equation 7) to a multilinear model (Equation 8).
This reflects the increase in R2 from adding a crossproduct term to a linear ]
model.  (4) For the two regression models with crossproduct terms (i.e.,

Equations 6 and 8), the unstandardized regres fon weight, b, can be obtained

for the X1 X X2 terms. (5) Similarly, the standardized regression (Beta)
]
weight, B, can be cvaluated for the crossproduct terms,
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(6) Using the derived regression values, Y, the difieron o Lo ween

derived and observed values, Y', can be summarized by ~can-nhsoluto-

deviation (MAD) scorces. (7) The same comparison can be made in terns of

root-mean~squared deviations (RMSD). (8) The data generated by the various

response models can be described by means, and {(9) standard deviations.

10) Finally, a coefficient-of-variation (standard deviation + mean) car be
y o

easily computed from the preceeding measures.

Inferential indices. (11) The significance of the s nluraized regression !
weight (computed in step 5) can be determined for the crossproduct terms in ‘
Equations 6 and §. (12) The hierarchical multiple regression approach (Cohen & 1
Cohen, 1975, chapter 8) is based on testing the improvement in R2 in going 1

from a linear model to a multilinear model (see step 3). The computation
formula used was:

(RZg - R%7) (N ~ k7 - kg - 1)

(1 - R%g) kg

where R28 and kg refer to the variance-accounted-for and number of independent
variables added (=1), respectively, for the multilinear model in Equation 8.
R27 and k7 (=2) are the comparable values in Equation 7. The F-ratio, based
on kg, (N - k7 - kg ~ 1) degrees of freedom, can be tested directly for
significance (see Arnold & Evans, 1979, p. 44).

(13) The lack-of-fit test (Draper & Smith, 1966, sec. 1.5) is based
on splitting the residual sum-of-squares (SS) in a regression analysis into

two parts: a lack-of-fit S$S and a 'pure error" SS. The F-ratio for lack-oi-

fit can be computed directly following standard analysis-of-variance logic.
(14) To obtain an estimate of pure error, a completc repliation of the data

was generated. The difference between the replications, Y;' and Y,', provides

an independent error estimate for use in tue lack-of-fit test (step 13). For

all other analyses, the difference in the replicates was ignored (see footnote

1 for further details).
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